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Abstract: Plant health is a very important factor in the agriculture system. 

The presence of plant hormones such as Auxin, gibberellic acid, and 

siderophores with variation numbers in the plant gives different effects on 

plant health. Related to the environment rich with rhizobacteria, they have a 

unique function because rhizobacteria can produce a chemical compound 

known as Plant Growth Promoting Rhizobacteria (PGPR). The purpose of 

the research is to study the production of auxin, gibberellic acid, and 

siderophore from rice rhizobacteria as the source of potential hormones for 

plant growth. Ten rhizobacteria isolates have been isolated from the rice 

rhizosphere. They are potential candidates as biofertilizers and biopesticide 

agents. The hormone production from each isolate was tested by 

spectrophotometric methods: Auxin at a wavelength of 535 nm with 

Salkowski's reagent, gibberellic acid at 254 nm, and siderophores at 560 nm 

with Hardaway's reagent. The results showed the highest auxin hormone was 

obtained from isolate 10 (3.374 ppm), the highest gibberellic acid from 

isolate 4 (3.960 ppm), and the highest siderophores hormone from isolate 2 

(2.910 ppm). The conclusion of the research is, plant growth regulator from 

rice rhizobacteria has the potential increasing plant health.  
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Introduction  

In recent years, the global issue related to sustainable 

agricultural systems still developing around the world. 

Using of microbes as soil biofertilizers attracted many 

countries applying in their agricultural areas. People's 

high demand for healthy agricultural products is the 

trigger for farmers producing food materials based in 

an eco-friendly environment.  

We know rhizobacteria is the root-associated bacterial 

living around the plant base and playing important role in 

providing nutrients. The rhizobacteria including those in the 

Plant Growth Promoting Rhizobacteria (PGPR) group, 

directly or indirectly promote plant growth and development. 

PGPR application is considerably important in improving 

plant growth, plant health, and yields (Bhattacharyya and 

Jha, 2012; Sharma et al., 2014a).  

Inoculation of rice plants used Plant Growth 

Promoting Rhizobacteria (PGPR) as the one important 

approach of eco-friendly technology. Commonly rice 

fields are induced by salinity causing ion toxicity, osmotic 

stress, ion imbalance, mineral deficiencies, and 

reducing quality and total yield of the affected crop 

(Rady et al., 2021; El-Mageed et al., 2022). 

Hormones as the organic compound stimulating plant 

growth could be formed naturally and chemically. Plant 

hormones have the function to promote, inhibit or alter 

growth and development in a very small concentration. 

The kind of plant hormones such as Auxin (indole acetic 

acid), Gibberellic Acid (GA3), and siderophores, but are 

insufficient amounts supporting plant growth and 

development. Some PGPR strains can synthesize auxin 

from precursor present in the root exudates or organic 

matter. The previous study showed rhizobacteria from the 

rice plant rhizosphere producing auxin about 1.39 and 

15.74 g/mL-1 (Javorekova et al., 2020).  

Auxin can spur cell prolongation, affecting healthy plant 

development. The impact of auxin on the plant showed the 

few parts of the plant that are not exposed to light will have 

faster growth, in contrast to other parts exposed to sunlight. 

Auxin is an easy find in the seed embryos, meristems of 

apical buds, and young leaves of the plant. Another function 
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of auxins is to stimulate flowering, increase enzyme activity 

and stimulate the formation of new roots. Also, auxin affects 

the induction of flowering (Haim et al., 2021).  

Gibberellic acid is a hormone similar to auxin, 

produced by plants in the meristem of apical buds, roots, 

young leaves, and embryos as the growth hormones in 

plants. The hormones greatly affect genetic traits (genetic 

dwarfism), flowering, ripening process or fruit ripening, 

mobilization of food materials during the germination 

phase, stimulating cambium activity and xylem 

development, preventing seed and shoot dormancy, and 

other physiological aspects. In addition, in the response to 

gravitational stimuli, gibberellic acid playing role in the 

early stages of cambium formation and stem gravitropism 

in the Mangium seedling (Hedden and Sponsel, 2015; 

Nugroho et al., 2012).  

Siderophores contain in plants influence genetic traits, 

stimulate flowering and fruit ripening, and are responsible 

for cell division (Patel and Minocheherhomji, 2018). It 

plays a role in the biological control of plant diseases with 

a very high affinity for iron and soluble in water (Aguado-

Santacruz et al., 2012). The main function of siderophores 

is to chelate ferrous iron/Fe(III) from various terrestrial 

and aquatic habitats, thereby making the compound 

available to microbial and plant cells (Ahmed and 

Holmstrom, 2014). 

The potential of rhizobacteria as the trigger of plant 

growth through their ability to produce growth hormones 

is a desirable characteristic of rhizobacteria. Therefore, 

the use of rhizobacteria as the bio-stimulator agents must 

be carried out in consortium to optimize the production of 

growth hormones. Rhizobacteria can live synergistically 

then potentially increasing plant health. The purpose of 

the research is to study the production of auxin, 

gibberellic acid, and siderophore from rice rhizobacteria 

as the source of potential hormones for plant growth. In 

the future, studies focusing on plant health and the impact 

of growth hormone production from several potential 

rhizobacteria need more effort to explore it. 

Materials and Methods 

Isolates Preparation 

Ten potential rhizobacteria were isolated from rice 

rhizosphere at three regencies in South Sulawesi, Indonesia 

(Takalar, Gowa, and Maros). The isolates were coded isolates 

1 to 10. All of the isolates were prepared and reproduced using 

the scratch-and-spray method on the media. 

Auxin Production Test 

The production of auxin (indole acetic acid) test was 

performed with Salkowski’s reagent in the 

spectrophotometric method. The isolates were cultured on 

the Nutrient Broth medium enriched with 0.1 ppm L-

Tryptophan as the precursor, then incubated at 28⁰C in the 

dark for 5 days. Furthermore, 5 mL of culture was taken 

and put into the test tube, followed by centrifugation at 10 

min at 8000 rpm. The supernatant was taken at 1 mL, 

added 4 mL of Salkowski's reagent (150 mL H2SO4, 250 mL 

distilled water, and 7.5 mL FeCl3.6H2O 0.5 M) was inside 

a test tube. There was incubated for 24 h at 28°C in the 

dark. The observations were made based color change of 

the culture to pink indicating the isolates contain auxin. 

The absorbance of all of the isolates was measured at a 

wavelength of 535 nm. Auxin production was measured 

based on the auxin standard curve.  

The concentration of auxin in the analysis used a 

spectrophotometric method based on the isolates absorbed 

by the UV-Visible spectrophotometer on Lambert-Beer 

law, the absorbance value is proportional to the sample 

concentration. The wavelength used is 535 nm in the 

visible region. The wavelengths were selected based on 

the color produced by the interaction between Salkowski's 

reagent and auxin which produced pink color. 

Gibberellic Acid Production 

Gibberellic Acid (GA3) production test was carried out 
based on standard methods. Firstly, the isolates were cultured 
on a liquid Nutrient Broth medium, then incubated at 37°C 
for 5 days. The culture was centrifuged for 10 min at a speed 
of 8000 rpm. About 15 mL of culture was added to 2 mL of 
zinc acetate, and after 2 min, added 2 mL of potassium 
Ferrocyanide solution was then centrifuged again for 10 min. 
Finally, 5 mL of the supernatant was added to 30% 
hydrochloric acid, mixed, and incubated at 27°C for 75 min. 
Blank was prepared using 5% hydrochloric acid. The 
absorbance was measured at wavelength 254 nm. The 
average of gibberellic acid produced is measured by the 
gibberellic acid standard curve.  

Production of Siderophores 

The siderophores production test was carried out using 
Hathway’s reagent method. The isolates were cultured on 
liquid Nutrient Broth media, then incubated at 37°C for 
5 days. After incubation, the culture was centrifuged for 10 
min at a speed of 8000 rpm. About 20 mL of supernatant was 
taken and pH was adjusted using an HCl solution. About 20 
mL of the supernatant was added into 20 mL of ethyl acetate, 
then extraction was carried out twice. Finally, 5 mL of the 
test solution was added to 5 mL of Hathway's reagent (1 mL 
of 0.1 m ferric chloride and 1 mL of 0.1 N HCl were 
added to 100 mL of distilled water mixed with 1 mL of 0.1 m 
potassium ferricyanide). The absorbance was measured at a 
wavelength of 560 nm. The average of siderophores 
production was measured by the siderophores standard curve.  

Results and Discussion 

Production of Auxin  

Auxin is an important growth hormone basic need in 

plant development. Table 1 showed the results of absorbance 
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value and auxin production. The highest production of auxin 

was obtained from isolate 10 (3.375 ppm) and the lowest 

was shown by isolate 5 (1.734 ppm).  

The results of Table 1 about the auxin hormone test 

showed that all isolates were able to produce auxin. There 

indicated color changes in the culture after adding 

Salkowski's reagent and incubation for 24 h. The color of 

the culture before the test was a cloudy yellow changed to 

pink color (Fig. 1). Salkowski's reagent containing FeCl3 

and HClO4, reacted with auxin to be a pink color.  

According to Kholida and Zulaika (2016), the color 

change of the isolate to pink after adding Salkowski's 

reagent was due to the reaction between Salkowski's 

reagent with auxin or Indole-3-Acetic Acid (IAA) 

forming compounds from tris-(indole)-3-acetate) iron 

(III) complex gives a reddish to red color. Therefore, 

rhizobacteria as the main source produced auxin turn to 

pink color when reacted with Salkowski's reagent. 

The genetic factors of each isolate strongly influenced the 

production of auxin by rhizobacteria. On the other hand, 

PGPR mediates biological control directly by eliciting 

induced systemic resistance against several plant diseases 

(Jetiyanon and Kloepper, 2002) and increasing many 

hormones produced by the plant (Ashrafuzzaman et al., 

2009). The nutrient content of rhizobacteria in the growth 

media also greatly influences auxin production, especially 

media containing L-Tryptophan as the precursor. 

Commonly rhizobacteria produced optimum levels of 

auxin in the presence of sucrose and tryptone as carbon 

and nitrogen sources, respectively (Suliasih and 

Widawati, 2020). Auxin produced by rhizobacteria are 

phytohormones able to increase plant growth. Various 

types of plant growth-promoting rhizobacteria produce 

various types of phytohormones. For example, indole 3-

acetic acid is the plant growth hormone that is responsible 

regulates physiological processes (Herlina et al., 2017). 
Differences in the auxin concentration are also due to 

the strain, growth phase, and age of the isolate. Patil et al. 
(2011) stated that rhizobacteria started producing auxin at 
the beginning of growth and maximum at the stationary 
phase. Production of auxin reaches the maximum when 
growth conditions decrease, with limited carbon 
availability and acidic conditions (Dewi et al., 2015). 
These conditions occur when rhizobacteria enter the 
stationary phase. The differences in auxin production 
could be due to the supply of L-tryptophan as the 
precursor of auxin synthesis. L-tryptophan is a precursor 
in auxin biosynthesis in many plants and microbes 
(Patil et al., 2011). Sometimes auxin production 
decreases because rhizobacteria re-consume the auxin 
from their production when the growth medium has 
inadequate nutrients (Lestari et al., 2007). 

Production of Gibberellic Acid  

The result of Table 2 showed all of the isolates 

produced gibberellic acid in a very number. It was 

indicated by the occurrence of color changes in the culture 

after adding zinc acetate and potassium Ferrocyanide 

solution and then incubating for 24 h. The color of the 

isolates was cloudy yellow, and after adding zinc acetate and 

potassium ferrocyanide solution formed pale yellow (Fig. 2).  

Gibberellic acid production of each rhizobacterium 

showed the highest production from isolate 4 (3.960 ppm) 

and the lowest from isolate 5 (3.849 ppm). 

As we know, auxin is an important plant hormone, and 

gibberellic acid also plays an important role as a growth 

regulator that promotes cell prolongation, seed 

germination, flowering, and fruit ripening. Based on the 

induced systemic, in nature, the unique hormone also 

producing by organisms such as plants, fungi, and bacteria 

(Kloepper et al., 2004). The role of Gibberellic Acid 

(GA3) in the plant has many benefits because it can break 

dormancy, increase flowering, and spur the process of 

seed germination and cell elongation. 

The ability of each isolate to produce gibberellic acid 

is influenced by several factors: The biochemical 

characteristics of each isolate and environmental factors 

(temperature, light, nutrients in the culture media, humidity, 

pH, and incubation time) (Kumar et al., 2014). In addition, 

the gibberellic acid plant growth-promoting hormones, 

playing important role in seed germination (Urbanova 

and Leubner-Metzger, 2016), response to abiotic stress 

(Colebrook et al., 2014) stem elongation (Wang et al., 2017) 

flowering (Muñoz-Fambuena et al., 2012) and other 

physiological effects that occur in interaction with other 

phytohormones (Hedden and Sponsel, 2015). 

 Commonly gibberellic acid or GA3 producing by 

plants, fungi, and bacteria (Camara et al., 2018). The 

microbe strain and the growth media composition greatly 

affected the production of siderophores in each 

rhizobacterium isolate. Siderophores are secondary 

metabolites produced by microbes in the form of organic 

compounds with low molecular mass. The main function 

of the siderophores is to chelate iron/Fe(III) from various 

terrestrial and aquatic habitats, making they are available 

to microbes and plant cells. Siderophores are compounds 

that playing role in the biological control of plant diseases 

with a very high affinity for iron, soluble in water, and 

rapidly diffuse (Habazar and Yaherwandi, 2006). 

Production of Siderophores 

The result in Table 3 showed all of the isolate's 

potential to produce siderophores. The color change of the 

culture was indicated after adding Salkowski's reagent 

and 1 mL 0.1 m potassium ferrocyanide, then incubation 

for 24 h. Figure 3 was showed the culture color was 

cloudy yellow and changed to blue color. 

Besides the color change in isolates after added 

reagent, the highest production of siderophores showed 

in isolate 2 (2.910 ppm), and the lowest showed in 

isolate 10 (0.005 ppm) (Table 3). 
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Table 1: The isolates code and absorbance of auxin production from rhizobacteria 

Isolates code Absorbance Number of auxin production (ppm) 

  1 0.131 1.906 

  2 0.183 2.718 

  3 0.149 2.187 

  4 0.193 2.875 

  5 0.120 1.734 

  6 0.187 2.781 

  7 0.136 1.984 

  8 0.165 2.484 

  9 0.212 3.171 

10 0.225 3.375 

 

Table 2: The isolates code and absorbance of gibberellic acid production from rhizobacteria 

Isolates code Absorbance Number of gibberellic acid production (ppm) 

  1 3.899 3.894 

  2 3.949 3.950 

  3 3.888 3.881 

  4 3.958 3.960 

  5 3.859 3.849 

  6 3.890 3.884 

  7 3.944 3.944 

  8 3.889 3.882 

  9 3.895 3.889 

10 3.881 3.873 

 

Table 3: The Isolates Code and Absorbance of Siderophores Production from Rhizobacteria 

Isolates code Absorbances Number of siderophores production (ppm) 

  1 0.448 2.351 

  2 0.548 2.910 

  3 0.348 1.793 

  4 0.338 1.737 

  5 0.460 0.106 

  6 0.036 0.050 

  7 0.366 1.893 

  8 0.342 1.759 

  9 0.135 0.603 

10 0.028 0.005 

 

 

 

Fig. 1: The color of auxin before and after treatment (pictures of 

result research by Maimuna Nontji, 2021) 

 

 

 

Fig. 2: The color of gibberelic acid before and after treatment 

(pictures of result research by Maimuna Nontji, 2021) 

 
 
Fig. 3: The color of siderophores before and after added reagent 

(pictures of result research by Maimuna Nontji, 2021) 

 

Several studies reported that siderophores produced by 

bacterial such as Azotobacter (16.22%), fluorescent 

Pseudomonas (11.11%), and Bacillus (10%) increased shoot 

and dry wheat biomass by 23 and 45%, respectively        

(Fischer et al., 2007). This useful compound also playing 

important role in controlling plant pathogens.  

Related to the color change of siderophores from 

rhizobacteria, (Sharma et al., 2014b; Mina et al., 2013) 

reported that the medium color was changed by 
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rhizobacteria from blue to orange. The difference in color 

changes in the medium plate (orange, purple, or 

purplish-red) recommends the production of 

siderophores of a different nature by the variety of 

microorganisms isolated and the color intensity can be 

a consequence of siderophore concentration. Many 

siderophores-producing microorganisms suppress 

some soil-borne fungal pathogens through a direct role 

as the biocontrol ability. A maximum number of 

siderophores was shown by Pseudomonas sp. in the of 

range, 20-21 mm in diameter of the orange color zone.  
In addition, siderophores-producing rhizobacteria 

effectively plant root disease infections causing annual 
losses in tobacco plants (Motta et al., 2004; Haas and 
Défago, 2005). Furthermore, there also explained that 
75% of isolates contain siderophores around 40-60%, 
such as Pseudomonas, could be potentially applied to 
low-iron soils to prevent plant soil-borne fungal pathogens 
(Tian et al., 2009; Koche et al., 2012; Deng et al., 2016). 
New knowledge in plant health always develops over 
time. For the future, the highest rice rhizosphere microbes 
production plant growth hormones recommended for 
application plant growth based ecosystem friendly. 

Conclusion  

Ten isolates of rhizobacteria isolated from rice 
rhizosphere produced plant-growth-promoting hormones 
resulting in many varieties. The potential highest 
production of hormones: Isolate 10 produced auxin 
hormone (3.375 ppm), isolate 4 produced gibberellic acid 
(3.960 ppm), and isolate 2 produced siderophores 
(2.910 ppm), respectively. Based on the research, using a 
plant growth regulator from rice rhizobacteria has the 
potential increasing plant health and reduce apply of a 
chemical compound in nature. 
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