Incidence, severity and symptom development on local cocoa clones in Sulawesi

by Ayu Kartini Parawansa

Submission date: 06-Jul-2023 03:23PM (UTC+0800) Submission ID: 2127163706 File name: INTERNO_ICPP_2013-7-566-567.pdf (22.27K) Word count: 822 Character count: 4606

Concurrent Session 44-Tropical Plant Pathology

Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 3190 Maile Way, Honolulu HI, 96822, USA Email: johnhu@hawaii.edu

Mealybug wilt of pineapple (MWP) is a devastating disease of pineapple, Ananas comosus (L.) Merr., worldwide. The disease is characterized by severe leaf-tip dieback, downward curling of the leaf margins, and loss of leaf turgidity, that can lead to total collapse of the plant. Pineapple mealybug wilt associated virus-1 (PMWaV-1), PMWaV-2, and PMWaV-3 have been identified in field-grown pineapple throughout Hawaii and are transmitted by the pink and grey pineapple mealybugs, Dymicoccus brevipes and D. neobrevipes, respectively. Vector transmission characteristics of PMWaV-2, including acquisition access period (AAP), and persistence and retention of the virus in grey pineapple mealybug vectors were evaluated. PMWaV-2 is transmitted by the grey pineapple mealybug in a semi-persistent manner. In Hawaii, PMWaV-2 infection and simultaneous feeding by mealybugs are both involved in the induction and etiology of MWP, whereas infections by PMWaV-1 and -3 do not appear to be necessary for wilt induction. Genomic analyses reveal that PMWaV-1 and PMWaV-3 lack elements that are present in PMVaV-2 including the intergenic region between the RdRp open reading frame (ORF) and the small hydrophobic protein ORF, lack a conserved motif in ORF4, encode a relatively small coat protein, and lack an diverged coat protein (CPd). These characteristics distinguish them from PMWaV-2 and the ampelovirus type member, Grapevine leafroll associated virus-3 (GLRaV-3). In addition, a badnavirus, designated Pineapple bacilliform CO virus-HI1 (PBCOV-HI1), was isolated and sequenced from pineapple in Hawaii. Approaches using non-transgenic and transgenic methods to control Pineapple mealybug wilt-associated viruses and badnaviruses were evaluated.

O44.005 Incidence, severity and symptom development of vascular-streak dieback on local cocoa clones in Sulawesi

<u>A.K. Parawansa¹</u>, A. Purwantara², P.J. McMahon³ and P.J. Keane³

¹Muslim University of Indonesia (UMI), Jl. UripSumohardjo, Md. assar, South Sulawesi, Indonesia; ²Biotechnology Research Institute for Estate Crops, Jl. Taman Kencana 1, Bogor 16151, Indonesia; ³Department of Botany, La Trobe University, Bundoora, VIC 3086, Australia

Email: ayuparawansa@yahoo.com

The incidence and severity of vascular-streak dieback (VSD) of cocoa caused by *Ceratobasidium theobromae* (syn.*Oncobasidium theobromae*) was determined in a range of cocoa clones at two sites in Sulawesi in Pinrang

555

and Polman Districts. In both study sites, all clones were attacked by VSD, with incidence ranging from 39.9% to 94.2%. However, some clones (PBC123, M05, Gene-J) were more resistant to VSD at both sites, sustaining 37-48% infection of branches, while Husbitori was highly susceptible sustaining over 80% infection. Achange in symptoms of VSD has been noted since 2004. The more recent symptoms indicate a greater degree of necrosis of the leaf lamina and vascular tissue compared to the symptoms originally associated with the disease. All clones in the study sustained infections that showed a mix of original and recent symptoms. In most clones the recent symptoms were predominant, but a significantly higher number of original symptoms occurred in BR25. No relation between resistance and the type of symptom was detected in the study. Observations of hyphae in infected twigs and sporocarps on leaf laminae and leaf scars showed that the fungus associated with the new symptoms was identical in all aspects to C. theobromae. Isolation of the fungus from infected xylem confirmed that the fungus that first emerges from the xylem is a slow-growing species that cannot be easily subcultured. Further investigations of pathogen populations are underway. This study confirms that VSD is likely to be caused primarily by C. theobromae, as originally described for the disease. It is possible that the new symptoms of VSDare caused by changes that affect the host response to the fungus. These could include changes in climate or soil fertility.

O44.006 Evaluation control of *Meloidogyne* spp. and radopholus similis with local material in Indonesia *Mulawarman*

Plant Pest and Diseases Department, Agriculture Faculty, University of Sriwijaya, Jl. Raya Palembang-unsri KM 32 Inderalaya, Ogan Ilir, Sumatera Selatan, Indonesia Email: Mulaunsri@gmail.com

Over 80 Meloidogyne species have been described so far and to attack over 1000 host plants and survive under a wide range of soil conditions. Root knot nematodes cause economic damage by reducing crop yield and quality. On a worldwide basis, crop loss due to Meloidogyne infestation is estimated at 13 %. The Radopholus simlis reported cause big problem especially on banana crops. In Indonesia we evaluate control using bioagents such bacterial and fungus. It showed the biological agent such bacteria and fungus could bring hope to control the diseases. The bio agent could suppress the nematode over 10 percentage. To develop the bio control face with the consistency, formulation and transportation especially the case in Indonesia with lower organic coil contains less than 1 percentage. And the farmer had almost no education with small farm area without good farm practical action.

Incidence, severity and symptom development on local cocoa clones in Sulawesi

ORIGINALITY REPORT 4% 1% 5IMILARITY INDEX 1% MATCH ALL SOURCES (ONLY SELECTED SOURCE PRINTED) 1% Didiek Hadjar Goenadi. "Shoot initiation by humic

acids of selected tropical crops grown in tissue culture", Plant Cell Reports, 01/1995

Publication

Exclude quotes	On	Exclude matches	Off
Exclude bibliography	On		